

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1508395531

COMBINED SCIENCE

5129/21

Paper 2

May/June 2016

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 24 printed pages.

1 A plant cell is shown in Fig. 1.1.

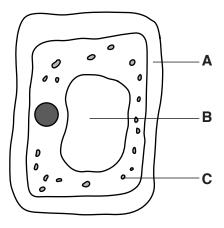


Fig. 1.1

	(a)	Name	the	structures	Α.	В	and	C
--	-----	------	-----	------------	----	---	-----	---

Α	 	 	
В	 	 	
C			

[3]

(b) A root hair cell is shown in Fig. 1.2.

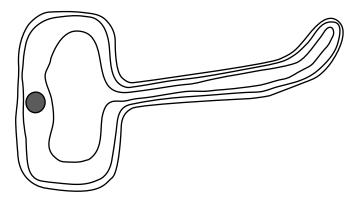


Fig. 1.2

State **two** ways in which the root hair cell is different in structure from the cell in Fig. 1.1. Explain the reason for each difference.

Write your answers in Table 1.1.

Table 1.1

	difference	reason for difference
1		
2		

[4]

2 The speed-time graph of part of a journey is shown in Fig. 2.1.

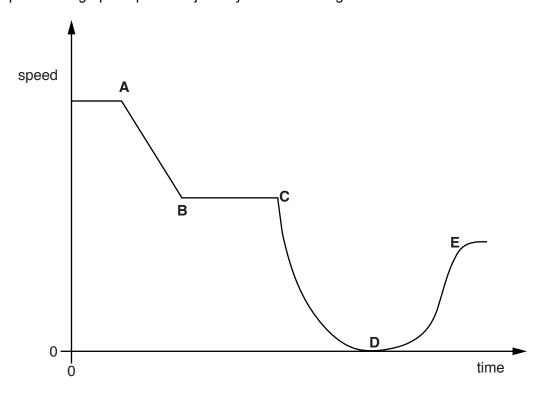


Fig. 2.1

Using the letters A to E, identify the point on the speed-time graph at which the motion changes

- (b) from rest to non-uniform acceleration. [1]

3 A boy kicks a football into the air, as shown in Fig. 3.1.

		Fig. 3.1	
(a)	Cor	mplete the sentences below.	
	Ast	the ball is kicked, energy is transferred from the boy to the ball.	
	This	s energy has been stored as energy	
	in th	ne muscles of the boy's legs.	
	As i	it rises after being kicked, the ball gains	
	ene	rgy and loses energy. [3]
(b)	The	e energy transferred to the ball is 72J.	
	(i)	The boot is in contact with the ball for 0.09 s.	
		Calculate the power of the kick.	
		power = W [1]
	(ii)	The weight of the ball is 4 N.	
		Calculate the vertical distance travelled by the ball into the air.	

distance = m [1]

4 Fig. 4.1 shows a paper chromatogram obtained from three coloured dyes and three inks **R**, **S** and **T**.

The three coloured dyes are yellow, blue and red.

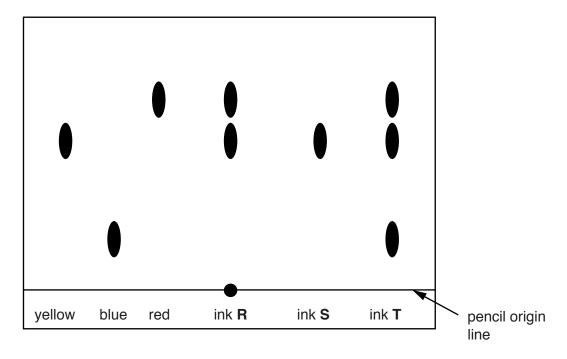


Fig. 4.1

(a)	Nan	ne the ink that contains all three coloured dyes	.[1]
(b)	•	lain how the chromatogram shows that ink S is a pure substance.	
(c)	(i)	Explain why a pencil is used to draw the origin line.	
	(ii)	Name the ink that contains a colour which is insoluble in the solvent used for chromatography experiment.	this
			[1]

5 Maize plants photosynthesise and produce maize cobs.

In an investigation, different quantities of nitrogen-containing fertiliser are added to six similar fields of maize plants.

The fields are the same size.

Fig. 5.1 shows the mass of maize cobs produced in each field.

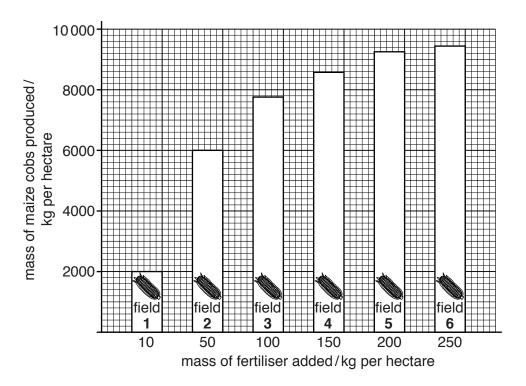


Fig. 5.1

(a)	(i)	Calculate the difference in the mass of maize cobs produced per hectare between field 1 and field 2 .
		kg per hectare [1]
	(ii)	Describe two trends shown in Fig. 5.1.
		1
		2
		[2]
(b)		te a factor which affects the rate of photosynthesis.
		[1]

6 Two steel cans, each containing 100 cm³ of water at 20 °C, are heated by an infra-red lamp, as shown in Fig. 6.1.

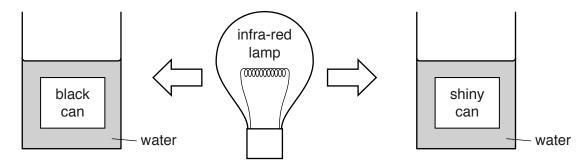


Fig. 6.1

The cans have different surface coatings. Each can is heated for 10 minutes and the final temperature of the water in each can is recorded.

Three results are obtained for each can.

The results are shown in Table 6.1.

Table 6.1

surface coating	temperature of water after 10 minutes/°C						
of can	test 1	test 2	test 3	average			
black	40	38	38	38.7			
shiny	22	24	25				

- (a) Complete Table 6.1 to show the average temperature of the water after 10 minutes in the can with the shiny surface. [1]
- **(b)** Complete the sentences below.

Energy is transferred from the lamp to the steel can by

Energy is then transferred through the steel can by

[2]

(c) Explain why the water in the black can has a larger temperature rise than the water in the shiny can.

7 Mercury(II) oxide decomposes when it is heated.

The equation for the reaction is shown.

2HgO
$$\longrightarrow$$
 2Hg + O₂

[A_r: O, 16; Hg, 201]

The relative molecular mass of mercury(II) oxide is 217.

(a)	Complete	the	following	sentences
-----	----------	-----	-----------	-----------

434g of mercury(II) oxide produces	g of mercury and
g of oxygen.	

10.85 g of mercury(II) oxide produces g of mercury. [3]

(b) A sample of the gas produced in this reaction is collected.

State a test, and the result, which shows that this gas is oxygen.

test	
II.	
result	
	្រោ

(c) State one use of oxygen in industry.

[41]
[1]

(d) Complete the equation by adding the state symbols.

8 Biological structures and their functions are shown in Fig. 8.1.

Draw a straight line to connect each structure with its function.

One line has been drawn for you.

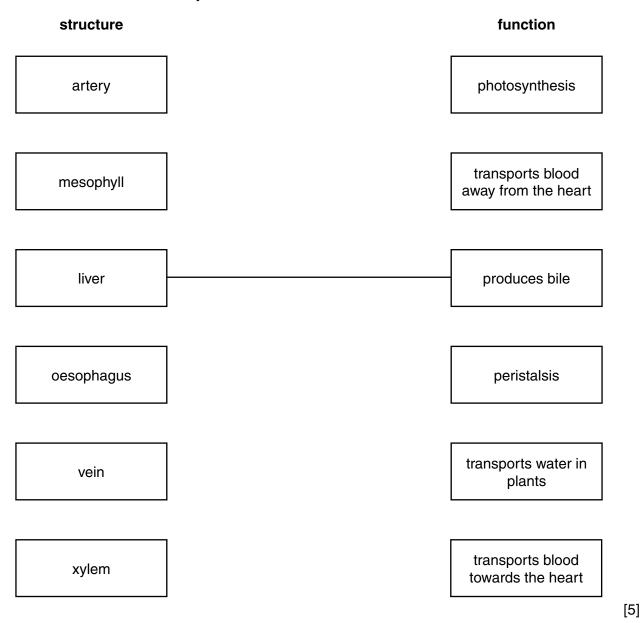


Fig. 8.1

9 Light enters a glass block as shown in Fig. 9.1.

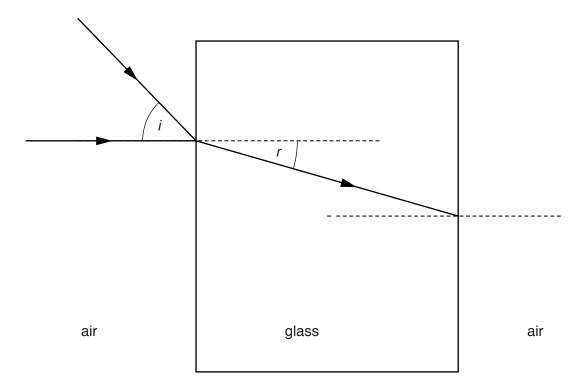


Fig. 9.1

- (a) On Fig. 9.1, draw a ray to show the direction of the light after it has left the glass block. [1]
- **(b)** Calculate the angle r when the angle i is 54°.

The refractive index of the glass is 1.5.

Show your working.

r=° [2]

10 The structure of an atom of fluorine is shown in Fig. 10.1.

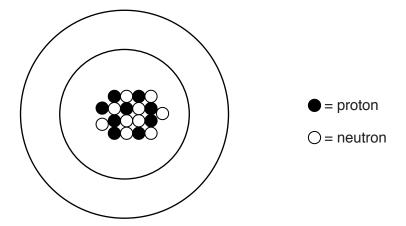


Fig. 10.1

- (a) For this atom, state
 - (i) the proton number,
 - (ii) the nucleon number. [2]
- **(b)** Complete Fig. 10.1 to show the electronic structure of this atom of fluorine. [1]
- (c) Fluorine is in Group VII of the Periodic Table.
 - (i) State the general name given to the elements in Group VII.

.....[1]

(ii) State how the reactivity of the elements changes as the group is descended.

.....[1]

11 Five test-tubes are set up as shown in Fig. 11.1.

Each test-tube contains 20 seeds.

The seeds in each tube are provided with different environmental conditions.

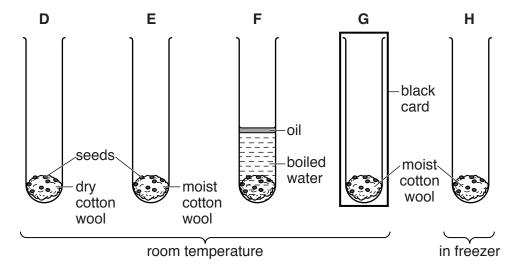


Fig. 11.1

(a)	(i)	State three environmental conditions that are investigated in this experiment.
		1
		2
		3[3
	(ii)	Predict which two test-tubes contain seeds that germinate.
		tube
(b)	Ехр	lain how the enzyme amylase helps the seeds to germinate.

12 A circuit diagram containing three resistors P, Q and R is shown in Fig. 12.1.

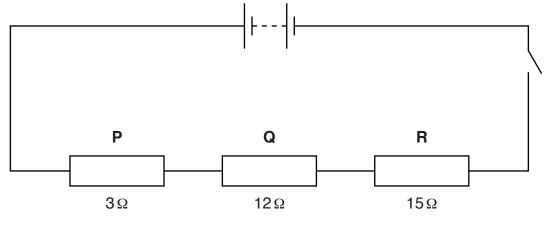


Fig. 12.1

(a) Calculate the combined resistance of resistors P, Q and R.

resistance =	 Ω	[1	ľ

(b) The circuit is switched on for 40 seconds.

The current in resistor P is 0.5 A.

(i) Calculate the potential difference (p.d.) across resistor **P**. State the unit.

(ii) Calculate the charge passing through resistor **P** in 40 seconds.

(c) Explain why resistor **R** is the resistor with the largest potential difference across it.

101

13 Some reactions of ethene are shown in Fig. 13.1.

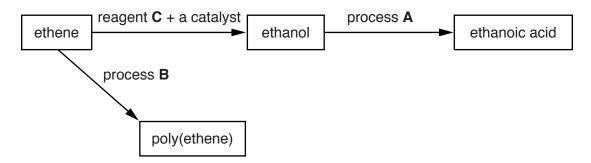


Fig. 13.1

		3	
(a)	Identify proce	esses A and B and reagent C.	
	process A		
	process B		
	reagent C		[3]
(b)	Explain why	a catalyst is used in the reaction to make ethanol from ethene.	
			[1]
(c)	In the space	below, draw the structure of poly(ethene).	

[2]

14 A microphone contains a coil of wire positioned in a strong magnetic field.

Sound waves are incident on a metal plate.

The plate is attached to a coil of wire.

The sound waves incident on the metal plate make the coil vibrate in a magnetic field.

A diagram of the microphone is shown in Fig. 14.1.

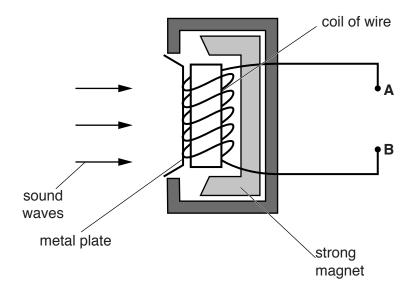


Fig. 14.1

(a) An electromotive force (e.m.f.) is induced between points **A** and **B** when the sound waves vibrate the metal plate.

State three changes that increase the magnitude of the induced e.m.f.

1	 	
2		
		_
3		[3]

(b) (i) Sound waves in air have a speed of 330 m/s.

The sound waves incident on the metal plate have a constant frequency of 60 Hz.

Calculate the wavelength of the sound waves.

wavelength =	 m	[2]
waveleligili —	 111	14

(ii) The sound waves incident on the metal plate are of constant amplitude as well as constant frequency.

On Fig. 14.2, sketch how the e.m.f. induced in the microphone by the sound waves varies with time for **two** complete periods of the sound wave.

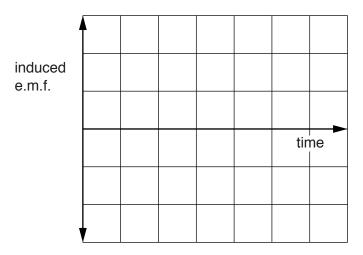


Fig. 14.2

[2]

15 Choose words from the list to complete the sentences below.

Each word may be used once, more than once or not at all.

	acia	aiconoi	bacteria		enamei	
	р	laque	saliva	viruses		
Teeth are use	ed to chew fo	od.				
Pieces of sug	gary food left	between the tee	th are acted on by	y		
This produce	s		which attacks			
the		of the te	eth.			[3]

16		gnesium reacts with dilute hydrochloric acid to form a solution of magnesium chloride a rogen.	nd
	(a)	Complete the equation for the reaction.	
		$Mg + \dots HCl \longrightarrow MgCl_2 + \dots$	[1]
	(b)	Hydrogen is used to make ammonia.	
		State two other uses of hydrogen.	
		1	
		2	[2]
	(c)	Describe how magnesium chloride crystals may be obtained from the magnesium chloride solution.	de
			•••
	(d)	Magnesium is a metal.	
		State two general physical properties of magnesium which show that it is a metal.	
		1	
		2	[2]

17 The male reproductive system is shown in Fig. 17.1.

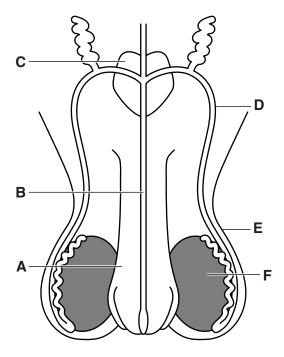


Fig. 17.1

State which letter shows the

structure which holds the testes outside the body cavity,	
gland which produces fluid to add to sperm,	
tube which is cut during vasectomy.	

[3]

18 A magnet is used to attract an unmagnetised steel bar, as shown in Fig. 18.1(a).

The steel bar is removed from the magnet and is then able to attract a small iron nail, as shown in Fig. 18.1(b).

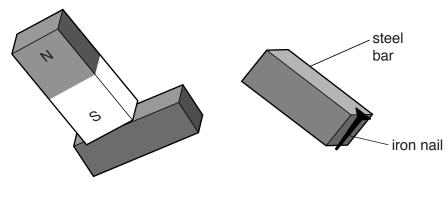


Fig. 18.1(a) Fig. 18.1(b)

(a)	State one property of magnets other than attraction.
	[1]
(b)	Explain why the steel bar is able to attract the small iron nail.
	[1]
(c)	The steel bar in Fig. 18.1(a) is replaced by a bar made from soft iron.
	The soft iron bar is then placed near a small iron nail.
	State how what is observed is different to the behaviour shown in Fig. 18.1(b).
	[1]

19	Ammonia is	manufactured	by	reacting	nitrogen	and	hydrogen	together	in	the	presence	of	а
	catalyst.												

The equation for the reaction is

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

Ammonia is used to manufacture the fertiliser ammonium sulfate.

(a)	Stat	te the so	ource of the nitrogen and of the hydrogen for this process.	
	nitro	ogen		
	hyd	rogen	[2]
(b)	Nan	ne the c	atalyst used in this reaction[1]
(c)	Amr	monia di	issolves in water to produce an alkaline solution.	
	(i)	State th	ne name of the ion which causes the solution to be alkaline.	
			[1]

(ii) Name the acid which reacts with ammonia to make ammonium sulfate.

20	State th years.	rree medical problems associated with the excessive consumption of alcohol fo	r many
	1		
	2		
	•••••		[3]
21	Sn-121	is a radioactive isotope of tin.	
	Sb-121,	, an isotope of antimony, is produced by the radioactive decay of Sn-121.	
	Part of t	the equation for this decay is shown.	
		$^{121}_{50}$ Sn \longrightarrow $^{121}_{51}$ Sb +	
	(a) Det	termine the number of neutrons in the nucleus of an atom of Sn-121.	
			[1]
	(b) (i)	State the type of emission that occurs when Sn-121 decays to Sb-121.	
			[1]
	(ii)	Describe the change that occurs in the nucleus of an atom of Sn-121 as it des Sb-121.	cays to
			[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Ś
7
7
\simeq
⊒
Φ
面
ᆵ
₽
Φ
$\overline{}$
꼳
<u>_10</u>
_
ပ
품
×
.9
a
₫
he
亡

	\text{\rm N}	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	86	R	radon			
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Ą	astatine -			
	>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	8	Ъо	molouium -	116		livermorium -
	>			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
	≥			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	=			5	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	ပ	cadmium 112	80	Нg	mercury 201	112	ű	copernicium -
										29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Gre										27	ဝိ	cobalt 59	45	R	rhodium 103	77	Ιr	iridium 192	109	Μ	meitnerium -
		- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium –
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	Ср	dubnium —
					ato	rek				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	¥	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			3	:=	lithium 7	+	Na	sodium 23	19	¥	potassium 39	37	8	rubidium 85	22	Cs	caesium 133	87	Ŧ	francium -

7.1	Γn	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	%	nobelium	1
69	Tm	thulium 169	101	Md	mendelevium	_
89	ш	erbium 167	100	Fm	ferminm	I
29	운	holmium 165	66	Es	einsteinium	-
99	۵	dysprosium 163	86	Ç	californium	I
65	Tp	terbium 159	97	Ř	berkelium	1
64	Вd	gadolinium 157	96	CH	curium	ı
63	E	europium 152	96	Am	americium	I
62	Sm	samarium 150	94	Pu	plutonium	I
61	Pm	promethium -	93	ď	neptunium	ı
09	PZ	neodymium 144	92	\supset	uranium	238
59	P	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	H	thorium	232
22	Гa	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)